RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Serial plasma metabolites following hypoxic-ischemic encephalopathy in a nonhuman primate model
Chun, P. T., McPherson, R. J., Marney, L. C., Zangeneh, S. Z., Parsons, B. A., Shojaie, A., Synovec, R. E., & Juul, S. E. (2015). Serial plasma metabolites following hypoxic-ischemic encephalopathy in a nonhuman primate model. Developmental Neuroscience, 37(2), 161-171. https://doi.org/10.1159/000370147
Biomarkers that indicate the severity of hypoxic-ischemic brain injury and response to treatment and that predict neurodevelopmental outcomes are urgently needed to improve the care of affected neonates. We hypothesize that sequentially obtained plasma metabolomes will provide indicators of brain injury and repair, allowing for the prediction of neurodevelopmental outcomes. A total of 33 Macaca nemestrina underwent 0, 15 or 18 min of in utero umbilical cord occlusion (UCO) to induce hypoxic-ischemic encephalopathy and were then delivered by hysterotomy, resuscitated and stabilized. Serial blood samples were obtained at baseline (cord blood) and at 0.1, 24, 48, and 72 h of age. Treatment groups included nonasphyxiated controls (n = 7), untreated UCO (n = 11), UCO + hypothermia (HT; n = 6), and UCO + HT + erythropoietin (n = 9). Metabolites were extracted and analyzed using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry and quantified by PARAFAC (parallel factor analysis). Using nontargeted discovery-based methods, we identified 63 metabolites as potential biomarkers. The changes in metabolite concentrations were characterized and compared between treatment groups. Further comparison determined that 8 metabolites (arachidonic acid, butanoic acid, citric acid, fumaric acid, lactate, malate, propanoic acid, and succinic acid) correlated with early and/or long-term neurodevelopmental outcomes. The combined outcomes of death or cerebral palsy correlated with citric acid, fumaric acid, lactate, and propanoic acid. This change in circulating metabolome after UCO may reflect cellular metabolism and biochemical changes in response to the severity of brain injury and have potential to predict neurodevelopmental outcomes.