RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Predicting energy expenditure from accelerometry counts in adolescent girls
Schmitz, K. H., Treuth, M., Hannan, P., McMurray, R., Ring, K. B., Catellier, D., & Pate, R. (2005). Predicting energy expenditure from accelerometry counts in adolescent girls. Medicine and Science in Sports and Exercise, 37(1), 155-161. https://doi.org/10.1249/01.mss.0000150084.97823.f7
PURPOSE: Calibration of accelerometer counts against oxygen consumption to predict energy expenditure has not been conducted in middle school girls. We concurrently assessed energy expenditure and accelerometer counts during physical activities on adolescent girls to develop an equation to predict energy expenditure.
METHODS: Seventy-four girls aged 13-14 yr performed 10 activities while wearing an Actigraph accelerometer and a portable metabolic measurement unit (Cosmed K4b2). The activities were resting, watching television, playing a computer game, sweeping, walking 2.5 and 3.5 mph, performing step aerobics, shooting a basketball, climbing stairs, and running 5 mph. Height and weight were also assessed. Mixed-model regression was used to develop an equation to predict energy expenditure (EE) (kJ.min(-1)) from accelerometer counts.
RESULTS: Age (mean [SD] = 14 yr [0.34]) and body-weight-adjusted correlations of accelerometer counts with EE (kJ.min(-1)) for individual activities ranged from -0.14 to 0.59. Higher intensity activities with vertical motion were best correlated. A regression model that explained 85% of the variance of EE was developed: [EE (kJ.min(-1)) = 7.6628 + 0.1462 [(Actigraph counts per minute - 3000)/100] + 0.2371 (body weight in kilograms) - 0.00216 [(Actigraph counts per minute - 3000)/100](2) + 0.004077 [((Actigraph counts per minute - 3000)/100) x (body weight in kilograms)]. The MCCC = 0.85, with a standard error of estimate = 5.61 kJ.min(-1).
CONCLUSIONS: We developed a prediction equation for kilojoules per minute of energy expenditure from Actigraph accelerometer counts. This equation may be most useful for predicting energy expenditure in groups of adolescent girls over a period of time that will include activities of broad-ranging intensity, and may be useful to intervention researchers interested in objective measures of physical activity.