RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Harter, R., Chen, P., McMichael, J., Cureg, E., Adeshiyan, S., & Morton, K. (2017). Constructing strata of primary sampling units for the Residential Energy Consumption Survey. RTI Press. RTI Press Occasional Paper No. OP-0041-1705 https://doi.org/10.3768/rtipress.2017.op.0041.1705
The 2015 Residential Energy Consumption Survey design called for stratification of primary sampling units to improve estimation. Two methods of defining strata from multiple stratification variables were proposed, leading to this investigation. All stratification methods use stratification variables available for the entire frame. We reviewed textbook guidance on the general principles and desirable properties of stratification variables and the assumptions on which the two methods were based. Using principal components combined with cluster analysis on the stratification variables to define strata focuses on relationships among stratification variables. Decision trees, regressions, and correlation approaches focus more on relationships between the stratification variables and prior outcome data, which may be available for just a sample of units. Using both principal components/cluster analysis and decision trees, we stratified primary sampling units for the 2009 Residential Energy Consumption Survey and compared the resulting strata.