RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Johnson, F. R., Hauber, A. B., & Poulos, C. M. (2009). A brief introduction to the use of stated-choice methods to measure preferences for treatment benefits and risks. RTI Press. RTI Press Research Report No. RR-0009-0909 https://doi.org/10.3768/rtipress.2009.rr.0009.0909
Regulatory decisions to approve, restrict development, or halt the marketing of new pharmaceuticals require evaluating the balance between benefits and risks, given the available evidence at a point in time. In response to concerns about how such decisions are reached, there is increasing interest in using patients' perceptions of the benefits of treatment features and their tolerance for possible risks to help inform regulatory decisions. Stated-choice methods, which measure stated preferences and are sometimes called discrete-choice experiments or conjoint analysis, are often the most valid and reliable techniques available for quantifying patient preferences because data on actual choices are limited. This introduction discusses how to adapt and apply stated-choice methods to quantitative benefit-risk analysis. We outline the conceptual framework for measuring patient preferences and the requirements for developing and administering a valid survey instrument. We also provide a numerical example illustrating how stated-choice data can be used to quantify benefit-risk tradeoff preferences. Finally, we discuss some limitations and practical considerations involving its use for regulatory and clinical decision making.