RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
X-ray-induced specific-locus mutations in the ad-3 region of two-component heterokaryons of Neurospora crassa, IX. Mutational spectra as a function of X-ray dose
De Serres, F. (1991). X-ray-induced specific-locus mutations in the ad-3 region of two-component heterokaryons of Neurospora crassa, IX. Mutational spectra as a function of X-ray dose. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 246(1), 15-30. https://doi.org/10.1016/0027-5107(91)90105-W
In previous studies, X-ray-induced specific-locus mutations in the adenine-3 (ad-3) region of a two-component heterokaryon (H-12) of Neurospora crassa were combined with a series of tester strains carrying markers in the ad-3 and immediately adjacent regions to map mutants that were presumed multilocus deletions (de Serres, 1989c, 1990a). Two new classes of X-ray-induced mutations were recovered: multiple-locus mutations consisting of gene/point mutations at the ad-3A or ad-3B locus with a closely linked recessive lethal mutation, or multilocus deletions covering the ad-3A, ad-3B and/or nic-2 loci with a closely linked recessive lethal mutation (designated ad-3R + RLCL and [ad-3]IR + RLCL, respectively). Thus, the ad-3 specific-locus assay can detect damage occurring at the ad-3A and the ad-3B loci, as well as at a minimum of 19 other loci in the immediately adjacent regions. The original overall spectrum of ad-3 mutations can be resolved, by genetic analysis, into a series of 30 subclasses. In the present paper, the data from the genetic analysis of 832 X-ray-induced mutants recovered from a series of 4 experiments (Webber and de Serres, 1965) have been presented in terms of Mutational Spectra organized as a function of X-ray dose. Comparison of these Spectra demonstrates the shift from high percentages of gene/point mutations (with a high percentage of mutants at the ad-3B locus showing allelic complementation) at low doses, to low percentages of gene/point mutations (with a low percentage of ad-3B mutants showing allelic complementation) and high percentages of multilocus deletion mutations and multiple-locus mutations (of genotype ad-3R + RLCL or [ad-3]IR + RLCL) at high doses. These Mutational Spectra demonstrate the marked dose-dependence of X-ray-induced specific-locus mutations in a eukaryotic organism