RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
We report the development of 480 nm cyan and 520 nm green light emitting diodes (LEDs) with a highly stable emission wavelength. The shift is less than 3 nm when the drive current density is changed from 0.1 to 38 A/cm(2). LEDs have been obtained in GaInN-based homoepitaxy on nonpolar m-plane GaN bulk substrates. For increasing emission wavelength we find a large number of additional dislocations generated within the quantum wells (2x10(8) to similar to 10(10) cm(2)) and a decrease in the electroluminescence efficiency. This suggests that the strain induced generation of defects plays a significant role in the performance limitations.