RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Water quality co-effects of greenhouse gas mitigation in US agriculture
Pattanayak, S., McCarl, BA., Sommer, A., Murray, B., Bondelid, T., Gillig, D., & DeAngelo, B. (2005). Water quality co-effects of greenhouse gas mitigation in US agriculture. Climatic Change, 71(3), 341-372.
This study develops first-order estimates of water quality co-effects of terrestrial greenhouse gas (GHG) emission offset strategies in U.S. agriculture by linking a national level agricultural sector model (ASMGHG) to a national level water quality model (NWPCAM). The simulated policy scenario considers GHG mitigation incentive payments of $25 and $50 per tonne, carbon equivalent to landowners for reducing emissions or enhancing the sequestration of GHG through agricultural and land-use practices. ASMGHG projects that these GHG price incentives could induce widespread conversion of agricultural to forested lands, along with alteration of tillage practices, crop mix on land remaining in agriculture, and livestock management. This study focuses on changes in cropland use and management. The results indicate that through agricultural cropland about 60 to 70 million tonnes of carbon equivalent (MMTCE) emissions can be mitigated annually in the U.S. These responses also lead to a 2% increase in aggregate national water quality, with substantial variation across regions. Such GHG mitigation activities are found to reduce annual nitrogen loadings into the Gulf of Mexico by up to one half of the reduction goals established by the national Watershed Nutrient Task Force for addressing the hypoxia problem