RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Vascular permeability factor (VPF, VEGF) in tumor biology
Senger, D. R., Van de Water, L., Brown, L. F., Nagy, J. A., Yeo, T. K., Yeo, T. K., Berse, B., Jackman, R. W., Dvorak, A. M., & Dvorak, H. F. (1993). Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer and Metastasis Reviews, 12(3-4), 303-324.
Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a multifunctional cytokine expressed and secreted at high levels by many tumor cells of animal and human origin. As secreted by tumor cells, VPF/VEGF is a 34-42 kDa heparin-binding, dimeric, disulfide-bonded glycoprotein that acts directly on endothelial cells (EC) by way of specific receptors to activate phospholipase C and induce [Ca2+]i transients. Two high affinity VPF/VEGF receptors, both tyrosine kinases, have thus far been described. VPF/VEGF is likely to have a number of important roles in tumor biology related, but not limited to, the process of tumor angiogenesis. As a potent permeability factor, VPF/VEGF promotes extravasation of plasma fibrinogen, leading to fibrin deposition which alters the tumor extracellular matrix. This matrix promotes the ingrowth of macrophages, fibroblasts, and endothelial cells. Moreover, VPF/VEGF is a selective endothelial cell (EC) growth factor in vitro, and it presumably stimulates EC proliferation in vivo. Furthermore, VPF/VEGF has been found in animal and human tumor effusions by immunoassay and by functional assays and very likely accounts for the induction of malignant ascites. In addition to its role in tumors, VPF/VEGF has recently been found to have a role in wound healing and its expression by activated macrophages suggests that it probably also participates in certain types of chronic inflammation. VPF/VEGF is expressed in normal development and in certain normal adult organs, notably kidney, heart, adrenal gland and lung. Its functions in normal adult tissues are under investigation.