RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Survey data are often used to fit linear regression models. The values of covariates used in modeling are not controlled as they might be in an experiment. Thus, collinearity among the covariates is an inevitable problem in the analysis of survey data. Although many books and articles have described the collinearity problem and proposed strategies to understand, assess and handle its presence, the survey literature has not provided appropriate diagnostic tools to evaluate its impact on regression estimation when the survey complexities are considered. We have developed variance inflation factors (VIFs) that measure the amount that variances of parameter estimators are increased due to having non-orthogonal predictors. The VIFs are appropriate for survey-weighted regression estimators and account for complex design features, e.g., weights, clusters, and strata. Illustrations of these methods are given using a probability sample from a household survey of health and nutrition.