RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Calibration weighting can be used to adjust for unit nonresponse and/or coverage errors under appropriate quasi-randomization models. Alternative calibration adjustments that are asymptotically identical in a purely sampling context can diverge when used in this manner. Introducing instrumental variables into calibration weighting makes it possible for nonresponse (say) to be a function of a set of characteristics other than those in the calibration vector. When the calibration adjustment has a nonlinear form, a variant of the jackknife can remove the need for iteration in variance estimation.