RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
A key strength of latent curve analysis (LCA) is the ability to model individual variability in rates of change as a function of 1 or more explanatory variables. The measurement of time plays a critical role because the explanatory variables multiplicatively interact with time in the prediction of the repeated measures. However, this interaction is not typically capitalized on in LCA because the measure of time is rather subtly incorporated via the factor loading matrix. The authors' goal is to demonstrate both analytically and empirically that classic techniques for probing interactions in multiple regression earl be generalized to LCA. A worked example is presented, and the use of these techniques is recommended whenever estimating conditional LCAs in practice