RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Surgical implantation of a bioengineered internal anal sphincter
Hashish, M., Raghavan, S., Somara, S., Gilmont, R. R., Miyasaka, E., Bitar, K. N., & Teitelbaum, D. H. (2010). Surgical implantation of a bioengineered internal anal sphincter. Journal of Pediatric Surgery, 45(1), 52-58. https://doi.org/10.1016/j.jpedsurg.2009.10.010
PURPOSE: Fecal incontinence is a common disorder that can have devastating social and psychologic consequences. However, there are no long-term ideal solutions for such patients. Although loss of continence is multifactorial, the integrity of the internal anal sphincter (IAS) has particular significance. We previously described the development of 3-dimensional bioengineered constructs using isolated smooth muscle tissue from donor C57BL/6 IAS. We hypothesized that the bioengineered ring constructs would retain cellular viability and promote neovascularization upon implantation into a recipient mouse.
METHODS: Internal anal sphincter ring constructs were surgically implanted into the subcutaneous tissue of syngeneic C57BL/6 mice and treated with either fibroblastic growth factor 2 (0.26 microg daily) or saline controls using a microosmotic pump. Internal anal sphincter constructs were harvested after 25 days (range, 23-26 days) and assessed morphologically and for tissue viability.
RESULT: Gross morphology showed that there was no rejection. Rings showed muscle attachment to the back of the mouse with no sign of inflammation. Fibroblastic growth factor 2 infusion resulted in a significantly improved histologic score and muscle viability compared with the control group.
CONCLUSIONS: Three-dimensional bioengineered IAS rings can be successfully implanted into the subcutaneous tissue of recipient mice. The addition of fibroblastic growth factor 2 led to improved muscle viability, vascularity, and survival. This approach may become a feasible option for patients with fecal incontinence.