RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Successful transplantation of human hepatic stem cells with restricted localization to liver using hyaluronan grafts
Turner, R. A., Wauthier, E., Lozoya, O. A., McClelland, R., Bowsher, J. E., Barbier, C., Prestwich, G., Hsu, E., Gerber, D. A., & Reid, L. M. (2013). Successful transplantation of human hepatic stem cells with restricted localization to liver using hyaluronan grafts. Hepatology, 57(2), 775-784. https://doi.org/10.1002/hep.26065
Cell therapies are potential alternatives to organ transplantation for liver failure or dysfunction but are compromised by inefficient engraftment, cell dispersal to ectopic sites, and emboli formation. Grafting strategies have been devised for transplantation of human hepatic stem cells (hHpSCs) embedded into a mix of soluble signals and extracellular matrix biomaterials (hyaluronans, type III collagen, laminin) found in stem cell niches. The hHpSCs maintain a stable stem cell phenotype under the graft conditions. The grafts were transplanted into the livers of immunocompromised murine hosts with and without carbon tetrachloride treatment to assess the effects of quiescent versus injured liver conditions. Grafted cells remained localized to the livers, resulting in a larger bolus of engrafted cells in the host livers under quiescent conditions and with potential for more rapid expansion under injured liver conditions. By contrast, transplantation by direct injection or via a vascular route resulted in inefficient engraftment and cell dispersal to ectopic sites. Transplantation by grafting is proposed as a preferred strategy for cell therapies for solid organs such as the liver.