RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Conventional and high-resolution electron microscopy have been applied for studying lattice defects in nonpolar a-plane GaN grown on a 4H-SiC substrate with an AlN buffer layer. Samples in plan-view and cross-sectional configurations have been investigated. Basal and prismatic stacking faults together with Frank and Shockley partial dislocations were found to be the main defects in the GaN layers. High-resolution electron microscopy in combination with image simulation supported Drum's model for the prismatic stacking faults. The density of basal stacking faults was measured to be similar to 1.6x10(6) cm(-1). The densities of partial dislocations terminating I-1 and I-2 types of intrinsic basal stacking faults were similar to 4.0x10(10) cm(-2) and similar to 0.4x10(10) cm(-2), respectively. The energy of the I-2 stacking fault in GaN was estimated to be (40 +/- 4) erg/cm(2) based on the separation of Shockley partial dislocations.