RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
A Genetically Encoded Quality Control for Isobaric Tagging Strategies
Zhang, T., Keele, G. R., Churchill, G. A., Gygi, S. P., & Paulo, J. A. (2021). Strain-Specific Peptide (SSP) Interference Reference Sample: A Genetically Encoded Quality Control for Isobaric Tagging Strategies. Analytical Chemistry, 93(12), 5241-5247. https://doi.org/10.1021/acs.analchem.0c05483
Isobaric tag-based sample multiplexing strategies are extensively used for global protein abundance profiling. However, such analyses are often confounded by ratio compression resulting from the co-isolation, co-fragmentation, and co-quantification of co-eluting peptides, termed "interference." Recent analytical strategies incorporating ion mobility and real-time database searching have helped to alleviate interference, yet further assessment is needed. Here, we present the strain-specific peptide (SSP) interference reference sample, a tandem mass tag (TMT)-pro-labeled quality control that leverages the genetic variation in the proteomes of eight phylogenetically divergent mouse strains. Typically, a peptide with a missense mutation has a different mass and retention time than the reference or native peptide. TMT reporter ion signal for the native peptide in strains that encode the mutant peptide suggests interference which can be quantified and assessed using the interference-free index (IFI). We introduce the SSP by investigating interference in three common data acquisition methods and by showcasing improvements in the IFI when using ion mobility-based gas-phase fractionation. In addition, we provide a user-friendly, online viewer to visualize the data and streamline the calculation of the IFI. The SSP will aid in developing and optimizing isobaric tag-based experiments.