RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Spray pattern analysis for metered dose inhalers I: Orifice size, particle size, and droplet motion correlations
Smyth, H., Hickey, A., Brace, G., Barbour, T., Gallion, J., & Grove, J. (2006). Spray pattern analysis for metered dose inhalers I: Orifice size, particle size, and droplet motion correlations. Drug Development and Industrial Pharmacy, 32(9), 1033-1041. https://doi.org/10.1080/03639040600637598
Factors that influence spray pattern measurements of pressurized, metered-dose inhalers have been evaluated. Spray patterns were correlated with changes in actuator orifice diameter, particle size profiles, and calculated estimates of particle-size dynamics of plumes during a spray. Spray patterns, regardless of actuator orifice size, were ellipsoid in the vertical direction. Measures of elliptical ratio, major axis, and minor axis were significantly influenced by orifice size in a non-linear fashion over the range of orifice sizes investigated. Spray patterns also correlated with particle size profile and spray geometry measurements. Spray distribution asymmetry may be related to droplet evaporation and sedimentation processes. However, the spray patterns did not appear sensitive to changes in gravitational force acting on the plume. Instead, it is postulated that elliptical spray patterns may have dependence on fluid dynamic processes within the inhaler actuator. Developing an understanding of these processes may provide a basis for developing spray pattern tests with relevance to product performance