RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Most electrokinetic microfluidic devices currently require high voltages (>50 V) to generate sustained electric fields. However, two long-standing limitations remain, namely: (i) the resulting electrolysis of water produces bubbles, forcing electrodes to be placed in reservoirs outside the channels, and (ii) direct integration with low-voltage microelectronics cannot be achieved. A further limitation is the lack of spatial control within the microchannel. This work presents a method to achieve low-voltage (?1 V) electrokinetic transport using micropatterned Ag-AgCl electrode arrays, which allows spatial flow control within microchannels. We demonstrate bidirectional electrophoretic control of microparticles within microfluidic channels using ±1 V.