RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Shifts in the composition of nitrogen deposition in the conterminous United States are discernable in stream chemistry
Lassiter, M. G., Lin, J., Compton, J. E., Phelan, J., Sabo, R. D., Stoddard, J. L., McDow, S. R., & Greaver, T. L. (2023). Shifts in the composition of nitrogen deposition in the conterminous United States are discernable in stream chemistry. Science of the Total Environment, 881, Article 163409. Advance online publication. https://doi.org/10.1016/j.scitotenv.2023.163409
Across the conterminous United States, the composition of atmospheric nitrogen (N) deposition is changing spatially and temporally. Previously, deposition was dominated by oxidized N, but now reduced N (ammonia [NH3] + ammonium [NH4+]) is equivalent to oxidized N when deposition is averaged across the entire nation and, in some areas, reduced N dominates deposition. To evaluate if there are effects of this change on stream chemistry at the national scale, estimates of N deposition form (oxidized or reduced) from the National Atmospheric Deposition Program Total Deposition data were coupled with stream measurements from the U.S. EPA National Rivers and Streams Assessments (three stream surveys between 2000 and 2014). A recent fine-scaled N input inventory was used to identify watersheds (<1000 km2) where atmospheric deposition is the largest N source (n = 1906). Within these more atmospherically-influenced watersheds there was a clear temporal shift from a greater proportion of sites dominated by oxidized N deposition to a greater proportion of sites dominated by reduced forms of N deposition. We found a significant positive correlation between oxidized N deposition and stream NO3- concentrations, whereas the correlation between reduced N deposition and stream NO3- concentrations were significant but weaker. Sites dominated by atmospheric inputs of reduced N forms had higher stream total organic N and total N despite lower total N deposition on average. This higher stream concentration of total N is mainly driven by the higher concentration of total organic N, suggesting an interaction between elevated reduced N in deposition and living components of the ecosystem or soil organic matter dynamics. Regardless of the proportion of reduced to oxidized N forms in deposition, stream NH4+ concentrations were generally low, suggesting that N deposited in a reduced form is rapidly immobilized, nitrified and/or assimilated by watershed processes.