RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Regions of microsynteny in Magnaporthe grisea and Neurospora crassa
Hamer, L., Pan, H., Adachi, K., Orbach, MJ., Page, A., Ramamurthy, L., & Woessner, JP. (2001). Regions of microsynteny in Magnaporthe grisea and Neurospora crassa. Fungal Genetics and Biology, 33(2), 137-143.
A bacterial artificial chromosome (BAC) clone containing 110,467 bp of genomic DNA from Magnaporthe grisea was sequenced, annotated, and compared to the genomes of Neurospora crassa, Candida albicans, and Saccharomyces cerevisiae. Twenty-six open reading frames (ORFs), involved in multiple biochemical pathways, were identified in the BAC sequence. A region of 53 kb, containing 18 of the 26 ORFs, was found to be syntenic to a portion of the N. crassa genome. Subregions of complete colinearity as well as interrupted colinearity were present. No synteny was evident with either C. albicans or S. cerevisiae. The identification of syntenic regions containing highly conserved genes across two genera that have been evolutionarily separated for approximately 200 million years elicits many biological questions as to the function and identity of these genes