RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
The present study examined sensorimotor reactivity in rats following traumatic brain injury (TBI). Moderate injury was induced with midline fluid percussion in some of the rats. Others received identical surgery, but were not injured (sham-injured rats), or received neither surgery nor injury (naive rats). All rats were evaluated in acoustic and/or tactile startle procedures. At 8 days post-injury, the sensorimotor reactivity of TBI rats to acoustic stimuli was severely reduced compared to that of sham-injured rats. This TBI-induced deficit was enduring (> 30 days). In a separate experiment, greater sensorimotor reactivity was observed with tactile (vs. acoustic) stimulation in both TBI and naive rats, although startle amplitudes for the TBI rats were lower than control levels for both types of stimuli. These results suggest that sensorimotor reactivity is altered by TBI and that the startle procedure is a promising method for investigation of information processing alterations following TBI