RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Wideband waveform techniques, such as pulse compression, allow for accurate weather radar measurements in a short data acquisition time. However, for extended targets such as precipitation systems, range sidelobes mask and corrupt observations of weak phenomena occurring near areas of strong echoes. Therefore, sidelobe suppression is extremely important in precisely determining the echo scattering region. A simulation procedure has been developed to accurately describe the signal returns from distributed weather targets, with pulse compression; waveform coding. This procedure is unique and improves on earlier work by taking into account the effect of target reshuffling during the pulse propagation time which is especially important for long duration pulses. The simulation procedure is capable of generating time series from various input range profiles of reflectivity, mean velocity, spectrum width, and SNR. Results from the simulation are used to evaluate the performance of phase coded pulse compression in conjunction with matched and inverse compression filters. The evaluation is based on comparative analysis of the integrated sidelobe level and Doppler sensitivity after the compression process. Pulse compression data from the CSU-CHILL radar is analyzed. The results from simulation and the data analysis show that pulse-compression techniques indeed provide a viable option for faster scanning rates while still retaining good accuracy in the estimates of various parameters that can be measured using a pulsed-Doppler radar. Also, it is established that with suitable sidelobe suppression filters, the range-time sidelobes can be suppressed to levels that are acceptable for operational and research applications.