RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Psychometric evaluation of the Symptoms of Infection with Coronavirus-19 (SIC)
Results from a cross-sectional study and a phase 3 clinical trial
Chan, E. K. H., Williams, V., Romano, C., Fehnel, S., Slagle, A. F., Stoddard, J., Sadoff, J., Mayorga, M., Lewis, S., Yarr, S., Ma, J., Liu, Y., Katz, E. G., McNulty, P., van Dromme, I., & McQuarrie, K. (2023). Psychometric evaluation of the Symptoms of Infection with Coronavirus-19 (SIC): Results from a cross-sectional study and a phase 3 clinical trial. Journal of Patient-Reported Outcomes, 7(1), 45. https://doi.org/10.1186/s41687-023-00581-z
BACKGROUND: The Symptoms of Infection with Coronavirus-19 (SIC) is a 30-item patient-reported outcome (PRO) measure scored by body system composites to assess signs/symptoms of coronavirus disease 2019 (COVID-19). In addition to cross-sectional and longitudinal psychometric evaluations, qualitative exit interviews were conducted to support the content validity of the SIC.
METHODS: In a cross-sectional study, adults diagnosed with COVID-19 in the United States completed the web-based SIC and additional PRO measures. A subset was invited to participate in phone-based exit interviews. Longitudinal psychometric properties were assessed in ENSEMBLE2, a multinational, randomized, double-blind, placebo-controlled, phase 3 trial of the Ad26.COV2.S COVID-19 vaccine. Psychometric properties evaluated included structure, scoring, reliability, construct validity, discriminating ability, responsiveness, and meaningful change thresholds of SIC items and composite scores.
RESULTS: In the cross-sectional study, 152 participants completed the SIC (mean age, 51.0 ± 18.6 years) and 20 completed follow-up interviews. Fatigue (77.6%), feeling unwell (65.8%), and cough (60.5%) were symptoms most frequently reported. SIC inter-item correlations were all positive and mostly moderate (r ≥ 0.3) and statistically significant. SIC items and Patient-Reported Outcomes Measurement Information System-29 (PROMIS-29) scores correlated as hypothesized (all r ≥ 0.32). Internal consistency reliabilities of all SIC composite scores were satisfactory (Cronbach's alpha, 0.69-0.91). SIC composite scores correlated moderately (r = 0.30-0.49) to strongly (r ≥ 0.50) with PROMIS-29 scores and Patient Global Impression of Severity (PGIS) ratings (all P < 0.01). A variety of signs/symptoms were cited in exit interviews, and participants considered the SIC straightforward, comprehensive, and easy to use. From ENSEMBLE2, 183 participants with laboratory-confirmed moderate to severe/critical COVID-19 were included (51.5 ± 14.8 years). Strong test-retest reliabilities were observed for most SIC composite scores (intraclass correlations ≥ 0.60). Statistically significant differences across PGIS severity levels were found for all but 1 composite score, supporting known-groups validity. All SIC composite scores demonstrated responsiveness based on changes in PGIS.
CONCLUSIONS: The psychometric evaluations provided strong evidence for the reliability and validity of the SIC for measuring COVID-19 symptoms, supporting its use in vaccine and treatment trials. In exit interviews, participants described a broad range of signs/symptoms consistent with previous research, further supporting the content validity and format of the SIC.