RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Private tabular survey data products through synthetic microdata generation
Hu, J., Savitsky, T. D., & Williams, M. R. (2022). Private tabular survey data products through synthetic microdata generation. Journal of Survey Statistics and Methodology, 10(3), 720-752. https://doi.org/10.1093/jssam/smac001
We propose two synthetic microdata approaches to generate private tabular survey data products for public release. We adapt a pseudo posterior mechanism that downweights by-record likelihood contributions with weights is an element of [0, 1] based on their identification disclosure risks to producing tabular products for survey data. Our method applied to an observed survey database achieves an asymptotic global probabilistic differential privacy guarantee. Our two approaches synthesize the observed sample distribution of the outcome and survey weights, jointly, such that both quantities together possess a privacy guarantee. The privacy-protected outcome and survey weights are used to construct tabular cell estimates (where the cell inclusion indicators are treated as known and public) and associated standard errors to correct for survey sampling bias. Through a real data application to the Survey of Doctorate Recipients public use file and simulation studies motivated by the application, we demonstrate that our two microdata synthesis approaches to construct tabular products provide superior utility preservation as compared to the additive noise approach of the Laplace Mechanism. Moreover, our approaches allow the release of microdata to the public, enabling additional analyses at no extra privacy cost.