RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Prenatal developmental toxicity evaluation of 2',3'-dideoxyinosine (ddI) and 2',3'-didehydro-3'-deoxythymidine (d4T) co-administered to Swiss Albino (CD-1) mice
Price, C., George, J., Marr, M., Myers, C., Bieler, G., Williams, R., & Jahnke, GD. (2006). Prenatal developmental toxicity evaluation of 2',3'-dideoxyinosine (ddI) and 2',3'-didehydro-3'-deoxythymidine (d4T) co-administered to Swiss Albino (CD-1) mice. Birth Defects Research Part B - Developmental and Reproductive Toxicology, 77(3), 207-215. https://doi.org/10.1002/bdrb.20076
BACKGROUND: In pregnant women, antiretroviral drugs improve maternal health and reduce vertical transmission of human immunodeficiency virus to the infant. However, few nonclinical studies have examined the potential for adverse drug interactions. METHODS: On gestational days (GD) 6-16, mice were dosed with vehicle, ddI (360, 1440, or 2,880 mg/kg/day, p.o.), d4T (60, 240, or 480), or ddI/d4T combinations (360/60, 1,440/240, or 2,880/480). Daily doses were divided into two equal parts that were administered >or=6-hr apart. Body weight, clinical signs, and feed consumption were monitored. Pregnancies (22-24/group) were confirmed at necropsy. Maternal liver and gravid uterine weights (GUW), uterine implants (resorption, live or dead fetus), fetal body weight, gender, and morphologic anomalies (external, visceral, skeletal) were recorded. RESULTS: Maternal body weight, clinical signs, and GUW were unaffected. Maternal weight change corrected for GUW was greater than controls at 60 and 480 d4T. Relative feed consumption during treatment was increased relative to controls at 1,440 and 2,880 ddI and 2,880/480 ddI/d4T. Relative maternal liver weight was elevated above controls at 240 and 480 d4T and 2,880/480 ddI/d4T, and above the constituent dose of ddI at 1,440/240 and 2,880/480 ddI/d4T. Liver weight was not affected by ddI and there was no significant drug interaction. Prenatal mortality and morphologic anomalies were not increased. Fetal body weight showed only a decreasing trend for ddI/d4T, no effect for ddI or d4T, and no statistically significant drug interaction. CONCLUSIONS: In pregnant mice, ddI/d4T combinations were not associated with well-defined developmental toxicity or adverse drug interactions