RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Predicting methylation status of CpG islands in the human brain
Fang, F., Fan, S., Zhang, X., & Zhang, M. Q. (2006). Predicting methylation status of CpG islands in the human brain. Bioinformatics, 22(18), 2204-2209. https://doi.org/10.1093/bioinformatics/btl377
MOTIVATION: Over 50% of human genes contain CpG islands in their 5'-regions. Methylation patterns of CpG islands are involved in tissue-specific gene expression and regulation. Mis-epigenetic silencing associated with aberrant CpG island methylation is one mechanism leading to the loss of tumor suppressor functions in cancer cells. Large-scale experimental detection of DNA methylation is still both labor-intensive and time-consuming. Therefore, it is necessary to develop in silico approaches for predicting methylation status of CpG islands.
RESULTS: Based on a recent genome-scale dataset of DNA methylation in human brain tissues, we developed a classifier called MethCGI for predicting methylation status of CpG islands using a support vector machine (SVM). Nucleotide sequence contents as well as transcription factor binding sites (TFBSs) are used as features for the classification. The method achieves specificity of 84.65% and sensitivity of 84.32% on the brain data, and can also correctly predict about two-third of the data from other tissues reported in the MethDB database.
AVAILABILITY: An online predictor based on MethCGI is available at http://166.111.201.7/MethCGI.html
CONTACT: mzhang@cshl.edu
SUPPLEMENTARY INFORMATION: Supplementary data available at Bioinformatics online and http://166.111.201.7/help.html.