RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Aims: The precise neurochemical perturbations through which perinatal (gestation/lactation) lead exposure modifies the reinforcement efficacy of various psychoactive drugs (e.g., cocaine, opiates) are unknown. The present study considers the role of altered serotonin and dopamine functionality in perinatal lead-psychostimulant interactions. Main methods: Female rats were administered a 16-mg lead or a control solution (p.o.) for 30 days prior to breeding with non-exposed males. Lead exposure was discontinued at weaning (postnatal day [PND] 21). Starting at PND 120, male rats born to control or lead-exposed dams were injected with either PAL-287 or PAL-353, at doses of 0, 2, 4, 8, or 16 umol/kg (i.p.) with each dose given prior to an acute (45 min) locomotion test. Whereas PAL-287 is a potent releaser of serotonin, PAL-353 is not. Each drug induces comparable release of norepinephrine (NE) and of dopamine (DA). Key findings: Control and lead rats exhibited minimal locomotion to PAL-287. PAL-353 produced a dose-dependent activation of locomotion in control rats relative to the effects of PAL-287 in control rats. Lead-exposed rats exhibited a subsensitivity to PAL-353 at doses of 4 and 8 umol/kg. Significance: The subsensitivity of lead rats to PAL-353 is consistent with a lead-induced diminution of dopamine function, an effect noted earlier for the reuptake inhibitor cocaine (Nation et al. 2000). The similar response of lead and control rats to PAL-287 is inconsistent with diminished serotonin function. (c) 2011 Elsevier Inc. All rights reserved