RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Prairie voles (Microtus ochrogaster) are monogamous mammals that form male-female pair bonds. Partner preference formation, one component of the pair bond in prairie voles, occurs following male-female cohabitation and is facilitated by mating. The peptide hormone oxytocin is released during physical contact and particularly following vaginal stimulation. Oxytocin has been implicated in mother-infant bond formation. The present study tested the hypothesis that oxytocin participates in the partner preference component of pair bond formation in adult prairie voles. Ovariectomized female prairie voles were implanted with osmotic mini-pumps releasing oxytocin (1-100 ng/h) or artificial cerebrospinal fluid (CSF). Pumps were implanted intracerebroventricularly or subcutaneously and females then were housed for 6h with a male partner, followed by a preference test in which females could elect to spend time with either the partner or an unfamiliar male. Females in groups that received centrally-administered oxytocin (10 or 100 ng/h), but not CSF, exhibited a significant preference for the partner present during infusion. The induction of a partner preference after oxytocin administration appeared specific for central oxytocin pathways as peripheral oxytocin administration was ineffective. Moreover, central administration of a selective oxytocin receptor antagonist inhibited the behavioral effect of exogenous oxytocin. These results suggest that oxytocin may be one factor contributing to the development of partner preferences in this monogamous rodent