RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Outdoor residential noise exposure and sleep in preadolescents from two European birth cohorts
Pérez-Crespo, L., Essers, E., Foraster, M., Ambrós, A., Tiemeier, H., & Guxens, M. (2023). Outdoor residential noise exposure and sleep in preadolescents from two European birth cohorts. Environmental Research, 225, Article 115502. https://doi.org/10.1016/j.envres.2023.115502
OBJECTIVE: To examine whether outdoor residential exposure to annual average road traffic and multiple (i.e., road traffic, railway, aircraft, industry) noise levels is related with preadolescents' sleep using maternal-reported and wrist-actigraphy data in two European birth cohorts.
METHODS: This cross-sectional study used data of 1245 preadolescents from the Dutch Generation R Study and 232 from the Spanish INMA-Sabadell cohort with a mean age of 12.3 years old. We used noise maps to assess average outdoor road traffic and multiple noise levels (day-evening-night noise indicator, LDEN) at each child's residential address for the year before the sleep assessment. Sleep disturbances were reported by mothers through the Sleep Disturbance Scale for Children and objectively recorded using GeneActiv wrist-actigraphy during seven subsequent days. Linear and Poisson regression models adjusted for several potential confounding variables were performed.
RESULTS: The mean (SD) exposure to road traffic noise was 53.2 dB (7.3) in the Generation R Study and 61.3 dB (5.9) in the INMA-Sabadell cohort. Exposure to road traffic was related with reduced total sleep time and longer wake after sleep onset (e.g. -3.62 min (95%CI -6.87; -0.37) and 6.88 min (95%CI 1.15; 12.61) per an increase of 10 dB in road traffic noise, respectively) collected by wrist-actigraphy. We observed no association between road traffic exposure and maternal-reported sleep disturbances. Results were similar for multiple noise exposure.
CONCLUSIONS: These findings indicate that sleep may be compromised for preadolescents living in areas highly exposed to outdoor residential noise. Future studies using longitudinal designs to further explore these associations during the different stages of sleep development across childhood and adolescence are warranted. Also, wrist-actigraphy measurements which provide more accurate information and may be complementary to the parental- and self-reported data should be considered.