RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Orbital fibroblast heterogeneity may determine the clinical presentation of thyroid-associated ophthalmopathy
Smith, T. J., Koumas, L., Gagnon, A., Bell, A., Sempowski, G. D., Phipps, R. P., & Sorisky, A. (2002). Orbital fibroblast heterogeneity may determine the clinical presentation of thyroid-associated ophthalmopathy. The Journal of Clinical Endocrinology and Metabolism, 87(1), 385-392. https://doi.org/10.1210/jcem.87.1.8164
Thyroid-associated ophthalmopathy, a process in which the orbital tissues become inflamed and are remodeled, occurs with a variable presentation. In some patients, eye muscle enlargement predominates. In others, the connective/adipose tissue enlargement appears the more significant problem. Orbital fibroblasts exhibit heterogeneous phenotypes in culture. Here we report that fibroblasts derived from the connective/adipose tissue depot are distinct from those investing the extraocular muscles. Connective tissue fibroblasts represent a bimodal population of cells with regard to the surface display of the glycoprotein, Thy-1. Perimysial fibroblasts in contrast express Thy-1 uniformly. In that regard, they resemble those from the skin. When subjected to a newly defined set of culture conditions, adipocyte differentiation occurs in up to 43% of the cells. All adipocytes examined failed to display Thy-1. Fibroblasts derived from perimysium and dermis uniformly do not differentiate into adipocytes when incubated under identical culture conditions. Both Thy-1(+) and Thy-1(-) connective tissue fibroblasts express the adipogenic trigger, peroxisome proliferator activator gamma, suggesting that differences in the potential for differentiation may reside with phenotypic attributes downstream from this receptor/adipogenic transcription factor. These observations enhance our understanding of orbital adipogenesis and define previously unrecognized differences between fibroblasts from the extraocular muscle and connective tissue.