RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Optimization of the heteroepitaxy of Ge on GaAs for minority-carrier lifetime
Venkatasubramanian, R., Timmons, M., Bothra, S., & Borrego, JM. (1991). Optimization of the heteroepitaxy of Ge on GaAs for minority-carrier lifetime. Journal of Crystal Growth, 112(1), 7-13. https://doi.org/10.1016/0022-0248(91)90906-L
Growth of Ge on GaAs at reasonably high temperatures, which produces better crystallinity in the Ge, presents serious difficulties due to the dissociation of the GaAs substrate. In this paper, we describe the growth of a low-temperature buffer layer of Ge on GaAs that considerably reduces the effects of decomposition of the GaAs during high-temperature growth of Ge. Using this approach, we present the first report of highly specular, mass-transport-limited, high-temperature growth of Ge on GaAs that is comparable to the homoepitaxy of Ge, although with a reasonably high residual n-type ( 1018 cm-3) doping level. The factors affecting the structural, electrical and optical properties of Ge on GaAs, using such an epitaxial growth technique, were studied. Lifetime variations from very low values to about 0.45 ?s were measured by a microwave technique as a function of growth conditions. Significantly, the removal of the surface oxide on the GaAs substrate prior to low-temperature buffer-layer growth, terminating the flow of germane (GeH4) during the ramp to high growth temperatures, thinner buffer layers, and high-temperature growth of Ge, were found to be important for obtaining long lifetimes.