RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
In recent years, cultured cardiac cell monolayers have become a contemporary experimental preparation for the study of fundamental mechanisms that underlie normal and pathologic electrophysiology at the tissue level. Ion channels and gap junctions in the cardiomyocyte monolayer may be modulated using drugs that suppress or enhance certain channels/junctions, or by genetic silencing or overexpression. The cardiomyocyte monolayer is particularly well suited for studies of functional electrophysiologic properties of mixtures of cardiac and noncardiac cells (eg, myofibroblasts), which otherwise would be difficult to investigate. Optical mapping of monolayers has provided insight into mechanisms that can set the stage for arrhythmias, such as unidirectional conduction block, gap junction uncoupling, ischemia, alternans, and anisotropy, and continues to enhance our understanding of basic electrophysiologic mechanisms