RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome
Berry-Kravis, E., Sumis, A., Hervey, C., Nelson, M., Porges, S., Weng, N., Weiler, IJ., & Greenough, WT. (2008). Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. Journal of Developmental and Behavioral Pediatrics, 29(4), 293-302. https://doi.org/10.1097/DBP.0b013e31817dc447
Objective: In fragile X syndrome (FXS), it is hypothesized that absence of the fragile X mental retardation protein (FMRP) disrupts regulation of group 1 metabotropic glutamate receptor (mGluR and mGluR5)-dependent translation in dendrites. Lithium reduces mGluR-activated translation and reverses phenotypes in the dfxr mutant fly and fmr1 knockout mouse. This pilot add-on trial was conducted to evaluate safety and efficacy of lithium in humans with FXS. Methods: Fifteen individuals with FXS, ages 6-23, received lithium titrated to levels of 0.8-1.2 mEq/L. The primary outcome measure, the Aberrant Behavior Checklist Community Edition (ABC-C) irritability Subscale, secondary outcome measures (other ABC-C subscales, clinical global improvement scale (CGI), visual analog scale for behavior (VAS), Vineland Adaptive Behavior Scale (VABS)), exploratory cognitive and psychophysiological measures and an extracellular signal-regulated kinase (ERK) activation assay were administered at baseline and 2 months of treatment. Side effects were quantified with a standardized checklist and lithium level, complete blood count (CBC), thyroid stimulating hormone (TSH), and chemistry screen were done at baseline, 2 weeks, 4 weeks and 2 months. Results: The only significant treatment-related side effects were polyuria/polyclipsia (n = 7) and elevated TSH (n = 4). Although the ABC-C irritability Subscale showed only a trend toward improvement, there was significant improvement in the Total ABC-C score (p = 0.005), VAS (p = 0.003), CGI (p = 0.002), VABS Maladaptive Behavior Subscale (p = 0.007), and RBANS List Learning (p = 0.03) and an enhanced ERK activation rate (p = 0.007). Several exploratory tasks proved too difficult for lower-functioning FXS subjects. Conclusions: Results from this study are consistent with results in mouse and fly models of FXS, and suggest that lithium is well-tolerated and provides functional benefits in FXS, possibly by modifying the underlying neural defect. A placebo-controlled trial of lithium in FXS is warranted