RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
SBIR has completed the development of the first lot of OASIS emitter arrays and custom packaging for cryogenic IR scene projection applications. OASIS performance requirements include a maximum MWIR apparent temperature of greater than 600 K, with 10-90% radiance rise time of less than 6.5 ms. Four (4) arrays have been packaged, integrated, tested and delivered. This paper will report on the first measurements taken of the OASIS resistive emitter arrays at both ambient and cryogenic temperatures. This paper will also provide a discussion of the OASIS cryogenic projector/electronics module (Cryo-PEM) design. We will also describe the novel thermal design employed within the array package and Cryo-PEM assemblies, which allows OASIS to produce radiometrically accurate imagery with reduced thermal lag/gradient artifacts compared to legacy Honeywell cryogenic IRSP assemblies. As OASIS supports both analog and digital input, we will discuss the differences between the two modes in terms of system integration, support electronics and overall array performance.