RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Neurotransmitter systems in the developing brain are generally protected from growth retardation associated with nutritional deprivation. To investigate if such protective mechanisms extend to similar tissues in the peripheral sympathetic system, maturation of the chromaffin cells of the adrenal medulla and development of their centrally derived splanchnic innervation were evaluated in rats whose nutritional status had been altered during the neonatal period by increasing (16–17 pups/litter) or decreasing (five to six pups/litter) the litter size from the standard (11–12 pups/litter). Ontogeny of adrenal catecholamine stores and activities of catecholamine-biosynthetic enzymes tyrosine hydroxylase and phenylethanolamine N-methyltransferase were monitored, along with activity of choline acetyltransferase, a marker enzyme for the preganglionic neurons innervating the chromaffin cells. Neonatal nutritional deprivation slowed body weight gain and retarded development of the chromaffin cells, as evidenced by subnormal catecholamine stores, tyrosine hydroxylase and phenylethanolamine N-methyltransferase activities. The effects persisted despite the complete recovery of body weights postweaning. The developmental alterations were not caused by overcrowding stress, as plasma corticosterone levels were not elevated in the large litter group. Neonatal nutritional enrichment promoted body weight gain but failed to enhance development of adrenal catecholamines; tyrosine hydroxylase and phenylethanolamine N-methyltransferase activities were elevated only in the preweaning period. In contrast to effects on the chromaffin cells, altered neonatal nutritional status had only minor, transient effects on the development of the centrally derived cholinergic innervation of the adrenal and produced only small changes (<10%) in brain tyrosine hydroxylase activity. These results suggest that, unlike central transmitter systems, maturation of chromaffin cells is adversely affected by neonatal nutritional deprivation; ontogenetic gains may already be close to optimum at normal nutritional status.