RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Neurofibromin binds to caveolin-1 and regulates ras, FAK, and Akt
Boyanapalli, M., Lahoud, O. B., Messiaen, L., Kim, B., Anderle de Sylor, M. S., Duckett, S. J., Somara, S., & Mikol, D. D. (2006). Neurofibromin binds to caveolin-1 and regulates ras, FAK, and Akt. Biochemical and Biophysical Research Communications, 340(4), 1200-1208. https://doi.org/10.1016/j.bbrc.2005.12.129
Neurofibromin (Nf1) is an approximately 280 kDa protein having tumor suppressor function, presumably by virtue of its GTPase activating domain, but little is known regarding molecular aspects of its effector pathways. Caveolin-1 (Cav-1) regulates diverse signaling molecules and has itself been implicated as a tumor suppressor. Here we demonstrate that Nf1 binds to Cav-1's scaffolding domain and co-immunoprecipitates with Cav-1. Analysis of Nf1's primary structure reveals four potential caveolin binding domains, and interestingly, in individuals with neurofibromatosis I, missense mutations occur with high frequency in 3 of the 4 putative domains. We show that Nf1 modulates ras, Akt, and focal adhesion kinase pathways, thereby affecting cytoskeletal organization; moreover, Nf1's effects on signaling are altered when lipid rafts and caveolae are disrupted by cholesterol depletion. These novel findings provide insight into possible signaling mechanisms of Nf1 and suggest that together Nf1 and Cav-1 may coordinately regulate cell growth and differentiation.