RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Neonatal manipulations of oxytocin alter expression of oxytocin and vasopressin immunoreactive cells in the paraventricular nucleus of the hypothalamus in a gender-specific manner
Yamamoto, Y., Cushing, BS., Kramer, KM., Epperson, PD., Hoffman, GE., & Carter Porges, C. (2004). Neonatal manipulations of oxytocin alter expression of oxytocin and vasopressin immunoreactive cells in the paraventricular nucleus of the hypothalamus in a gender-specific manner. Neuroscience, 125(4), 947-955. https://doi.org/10.1016/j.neuroscience.2004.02.028
Early postnatal manipulations of oxytocin have long-term behavioral and physiological consequences; the present study examined the hypothesis that oxytocin or its absence influences the subsequent expression of either oxytocin or arginine vasopressin in the CNS. On postnatal day 1 female and male prairie voles (Microtus ochrogaster) received a single i.p. injection of oxytocin (3 mug), oxytocin antagonist (0.3 mug), or 50 mul of isotonic saline or were only handled. On postnatal days 1, 8 and 21, brains were fixed, sectioned and stained for oxytocin or vasopressin immunoreactivity and analyzed as a function of age, treatment and sex. Both oxytocin and vasopressin immunoreactivity were observed on day 1 in the supraoptic and paraventricular nuclei (PVN) of the hypothalamus. Numbers of oxytocin and vasopressin neurons increased with age in both nuclei. Females treated on postnatal day 1 with oxytocin or oxytocin antagonist displayed a significant increase in oxytocin immunoreactivity on day 21 in the PVN. In contrast, males treated with antagonist tended to have decreased vasopressin immunoreactivity in the same region. These results revealed that the effects of neonatal manipulation of oxytocin are age-dependent, site-specific and sexually dimorphic. The long-lasting effects of neonatal exposure to exogenous oxytocin and oxytocin antagonist indicate a role for oxytocin in the development of the CNS during the neonatal period, affecting the development of the oxytocinergic system in females and the vasopressinergic system in males. The developmental effects observed suggest one possible mechanism by which neonatal exposure to oxytocin or neonatal inhibition of endogenous oxytocin produces longlasting behavioral and physiological alterations and could play a role in the development of male- and female-typical behavior. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved