RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Scientific uncertainty plays a major role in assessing the potential environmental risks of nanoparticles. Moreover, there is uncertainty within fundamental data and information regarding the potential environmental and health risks of nanoparticles, hampering risk assessments based on standard approaches. To date, there have been a number of different approaches to assess uncertainty of environmental risks in general, and some have also been proposed in the case of nanoparticles and nanomaterials. In recent years, others have also proposed that broader assessments of uncertainty are also needed in order to handle the complex potential risks of nanoparticles, including more descriptive characterizations of uncertainty. Some of these approaches are presented and discussed herein, in which the potential strengths and limitations of these approaches are identified along with further challenges for assessing uncertainty pertaining to the potential environmental risks of nanoparticles. Currently, international research efforts are underway not only to assess these uncertainties but also to handle the embedded uncertainties within assessing the potential environmental risks of nanoparticles. However, it is clear that further research efforts are needed to sufficiently handle the extensive uncertainties associated with nanoparticle risks, given the diversity of materials, pace of innovation, and various environmental parameters to consider.