RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
The inhibition of radioligand binding and [S-35]GTP gamma S functional assay data for N-methyl- and N-phenethyl-9 beta-methyl-5-(3-hydroxyphenyl (5b and 5c) show that these compounds are pure antagonists at the mu, delta, and kappa opioid receptors. Since 5b and 5c have the 5-(3-hydroxyphenyl) group locked in a conformation comparable to an equatorial group of a piperidine chair conformation, this information provides very strong evidence that opioid antagonists can interact with opioid receptors in this conformation. In addition, it suggests that the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine class of antagonist operates via a phenyl equatorial piperidine chair conformation. Importantly, the close relationship between the 4-(3-hydroxyphenyl)piperidines and 5-(3-hydroxyphenyl)morph an antagonists shows that the latter class of compound provides a rigid platform on which to build a novel series of opioid antagonists.