RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Modifying loading during gait leads to biochemical changes in serum cartilage oligomeric matrix protein concentrations in a subgroup of individuals with anterior cruciate ligament reconstruction
Armitano-Lago, C., Evans-Pickett, A., Davis-Wilson, H., Munsch, A., Longobardi, L., Willcockson, H., Schwartz, T. A., Franz, J. R., & Pietrosimone, B. (2024). Modifying loading during gait leads to biochemical changes in serum cartilage oligomeric matrix protein concentrations in a subgroup of individuals with anterior cruciate ligament reconstruction. Clinical Rheumatology, (4). https://doi.org/10.1007/s10067-024-06898-4
PURPOSE: Strong observational evidence has linked changes in limb loading during walking following anterior cruciate ligament reconstruction (ACLR) to posttraumatic osteoarthritis (PTOA). It remains unknown if manipulating peak loading influences joint tissue biochemistry. Thus, the purpose of this study is to determine whether manipulating peak vertical ground reaction force (vGRF) during gait influences changes in serum cartilage oligomeric matrix protein (sCOMP) concentrations in ACLR participants.
METHODS: Forty ACLR individuals participated in this randomized crossover study (48% female, age = 21.0 ± 4.4 years, BMI = 24.6 ± 3.1). Participants attended four sessions, wherein they completed one of four biofeedback conditions (habitual loading (no biofeedback), high loading (5% increase in vGRF), low loading (5% decrease in vGRF), and symmetrical loading (between-limb symmetry in vGRF)) while walking on a treadmill for 3000 steps. Serum was collected before (baseline), immediately (acute post), 1 h (1 h post), and 3.5 h (3.5 h post) following each condition. A comprehensive general linear mixed model was constructed to address the differences in sCOMP across all conditions and timepoints in all participants and a subgroup of sCOMP Increasers.
RESULTS: No sCOMP differences were found across the entire cohort. In the sCOMP Increasers, a significant time × condition interaction was found (F9,206 = 2.6, p = 0.009). sCOMP was lower during high loading than low loading (p = 0.009) acutely (acute post). At 3.5 h post, sCOMP was higher during habitual loading than symmetrical loading (p = 0.001).
CONCLUSION: These data suggest that manipulating lower limb loading in ACLR patients who habitually exhibit an acute increase in sCOMP following walking results in improved biochemical changes linked to cartilage health. Key Points • This study assesses the mechanistic link between lower limb load modification and joint tissue biochemistry at acute and delayed timepoints. • Real-time biofeedback provides a paradigm to experimentally assess the mechanistic link between loading and serum biomarkers. • Manipulating peak loading during gait resulted in a metabolic effect of lower sCOMP concentrations in a subgroup of ACLR individuals. • Peak loading modifications may provide an intervention strategy to mitigate the development of PTOA following ACLR.