RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters
El Abidine El Morjani, Z., Ebener, S., Boos, J., Ghaffar, EA., & Musani, A. (2007). Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. International Journal of Health Geographics, 6, 8. https://doi.org/10.1186/1476-072X-6-8
Background Reducing the potential for large scale loss of life, large numbers of casualties, and widespread displacement of populations that can result from natural disasters is a difficult challenge for the individuals, communities and governments that need to respond to such events.
While it is extremely difficult, if not impossible, to predict the occurrence of most natural hazards; it is possible to take action before emergency events happen to plan for their occurrence when possible and to mitigate their potential effects.
In this context, an Atlas of Disaster Risk is under development for the 21 Member States that constitute the World Health Organization's (WHO) Eastern Mediterranean (EM) Region and the West Bank and Gaza Strip territory.
Methods and Results This paper describes the Geographic Information System (GIS) based methods that have been used in order to create the first volume of the Atlas which looks at the spatial distribution of 5 natural hazards (flood, landslide, wind speed, heat and seismic hazard).
It also presents the results obtained through the application of these methods on a set of countries part of the EM Region before illustrating how this type of information can be aggregated for decision making.
Discussion and Conclusion The methods presented in this paper aim at providing a new set of tools for GIS practitioners to refine their analytical capabilities when examining natural hazards, and at the same time allowing users to create more specific and meaningful local analyses.
The maps resulting from the application of these methods provides decision makers with information to strengthen their disaster management capacity. It also represents the basis for the reflection that needs to take place regarding populations' vulnerability towards natural hazards from a health perspective.