RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Modelling insecticide resistance of malaria vector populations in Tanzania
Bisanzio, D., Ally, M., Ali, A. S., Kitojo, C., Serbantez, N., Kisinza, W. N., Magesa, S., & Reithinger, R. (2022). Modelling insecticide resistance of malaria vector populations in Tanzania. American Journal of Tropical Medicine and Hygiene, 107(2), 308-314. https://doi.org/10.4269/ajtmh.21-0262
Anopheline mosquito insecticide resistance is a major threat to malaria control efforts and ultimately countries' ability to eliminate malaria. Using publicly available and published data we conducted spatial analyses to document and model the geo-spatial distribution of Anopheles gambiae s.l. insecticide resistance in Tanzania at national, regional, district and sub-district levels for the 2011 - 2017 period. We document anopheline mosquito resistance to all four major insecticide classes, with overall mosquito mortality declining from 2011 to 2016, and mean reductions of 1.6%, 0.5%, 0.4%, and 9.9% observed for organophosphates, carbamates, organochlorines and pyrethroids, respectively. An insecticide resistance map modeled for 2017 predicted that anopheline vector mortality was still above the 90% susceptibility threshold for all insecticide classes, except for pyrethroids. Using the model's output we calculated that resistance to organophosphates, carbamates, organochlorines, and pyrethroids is expected to exist in 11.6%, 15.6%, 8.1%, and 19.5% of Tanzania's territory, respectively, with areas in the Lake Zone and eastern Tanzania particularly affected. The methodology to predictively model available insecticide resistance data can readily be updated annually, allowing policy makers and malaria program management staff to continuously adjust their vector control approaches and plans, and determine where specific insecticides from various classes should be used to maximize intervention effectiveness.