RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Modeling the Performance of Rechargeable Lithium-Based Cells - Design Correlations for Limiting Cases
Doyle, M., & Newman, J. (1995). Modeling the Performance of Rechargeable Lithium-Based Cells - Design Correlations for Limiting Cases. Journal of Power Sources, 54(1), 46-51.
We use simplified models based on porous-electrode theory to describe the discharge of rechargeable lithium batteries and derive analytic expressions for the cell potential, specific energy, and average power in terms of the relevant system parameters. The resulting theoretical expressions are useful for design and optimization purposes and also can be used as a tool for the identification of system limitations from experimental data. The system treated is an ohmically-limited cell with no concentration gradients having an insertion reaction whose open-circuit potential depends linearly on state-of-charge. Although the slope of the open-circuit potential controls the reaction distribution in the porous electrode, we find that the cell potential is independent of this slope. The results are applied to a cell of the form Li\polymer\LiyMn2O4 in order to illustrate their utility