RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
After reviewing the basic modeling framework for simulating battery behavior, three examples relating to mass-transfer effects are presented. Side reactions at the lithium electrode can change the surface concentration of lithium ions, introducing error into measurements of the cell potential as a function of bulk electrolyte concentration (concentration-cell measurements). This error introduced by a continuous side reaction is carried over into calculations of the transference number from the galvanostatic polarization method. Concentration gradients formed during passage of current are associated with a heat-of-mixing effect, which is the cause of heat generation during relaxation after cessation of the current. Finally, molecular dynamics simulations show that the decrease in conductivity with increasing salt concentration in liquid carbonate electrolytes is caused by ion association. (C) 2003 Published by Elsevier Science B.V