RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Modeling a Discrete Spatial Response Using Generalized Linear Mixed Models: Application to Lyme Disease Vectors
Das, A., Lele, S., Glass, G., Shields, T., & Patz, J. (2002). Modeling a Discrete Spatial Response Using Generalized Linear Mixed Models: Application to Lyme Disease Vectors. International Journal of Geographic Information Science, 16(2), 151 - 166. https://doi.org/10.1080/13658810110099134
Predicting disease risk by identifying environmental factors responsible for the geographical distribution of disease vectors can help target control strategies and optimize preventive measures. In this study we present a hierarchical approach to model the distribution of Lyme disease ticks as a function of environmental factors. We use the Poisson framework natural for count data while allowing for spatial correlations. To help identify environmental factors that best explain tick abundance, we develop an intuitive procedure for covariate selection in the spatial context. These methods could be useful in analysing effects of environmental and climatological changes on the distribution of disease vectors, and the spatial extrapolation of vector abundance under such scenarios.