RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
A miniature electron ionization source fabricated using microelectromechanical systems (MEMS) with integrated carbon nanotube (CNT) field emission cathodes and low-temperature co-fired ceramics (LTCC)
Radauscher, E. J., Parker, C. B., Gilchrist, K. H., Di Dona, S., Russell, Z. E., Hall, S. D., Carlson, J. B., Grego, S., Edwards, S. J., Sperline, R. P., Denton, M. B., Stoner, B. R., Glass, J. T., & Amsden, J. J. (2017). A miniature electron ionization source fabricated using microelectromechanical systems (MEMS) with integrated carbon nanotube (CNT) field emission cathodes and low-temperature co-fired ceramics (LTCC). International Journal of Mass Spectrometry, 422, 162-169. https://doi.org/10.1016/j.ijms.2016.10.021
The use of microelectromechanical systems (MEMS) components in miniature mass spectrometers is particularly attractive due to their small size and scalable manufacturing capability. Our group has pioneered the development of miniature electron ionization sources combining MEMS fabricated structures with integrated carbon nanotube (CNT) cold-cathode field emitters. However, until now they have been of limited use due to the limited ability to direct the ions into a mass analyzer. In this work, we design a miniature ion source using a microfabricated MEMS device and a low temperature co-fired ceramic (LTCC) carrier that includes electrical connections, ion optics for directing ions out of the device, and a sample inlet. We present the design and fabrication of the ion source; simulate the energy and angular dispersion; and experimentally determine the energy and angular dispersion. (C) 2016 Elsevier B.V. All rights reserved.