RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Acrylamide (AM), used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to AM can occur through the dermal and inhalation routes. The objectives of this study were to evaluate the metabolism of AM in humans following oral administration, to compare hemoglobin adduct formation on oral and dermal administration, and to measure hormone levels. The health of the people exposed under controlled conditions was continually monitored. Prior to conducting exposures in humans, a low-dose study was conducted in rats administered 3 mg/kg (1,2,3-C-13(3)) AM by gavage. The study protocol was reviewed and approved by Institute Review Boards both at RTI, which performed the sample analysis, and the clinical research center conducting the study. (1,2,3-C-13(3)) AM was administered in an aqueous solution orally (single dose of 0.5, 1.0, or 3.0 mg/kg) or dermally (three daily doses of 3.0 mg/kg) to sterile male volunteers. Urine samples (3 mg/kg oral dose) were analyzed for AM metabolites using C-13 NMR spectroscopy. Approximately 86% of the urinary metabolites were derived from GSH conjugation and excreted as N-acetyl-S-(3-amino-3-oxopropyl)cysteine and its S-oxide. Glycidamide, glyceramide, and low levels of N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine were detected in urine. On oral administration, a linear dose response was observed for N-(2-carbamoylethyl)valine (AAVal) and N-(2-carbamoyl-2-hydroxyethyl)valine (GAVal) in hemoglobin. Dermal administration resulted in lower levels of AAVal and GAVal. This study indicated that humans metabolize AM via glycidamide to a lesser extent than rodents, and dermal uptake was approximately 6.6% of that observed with oral uptake