RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Macromolecular assembly of the transition state regulator AbrB in its unbound and complexed states probed by microelectrospray ionization mass spectrometry
Benson, LM., Vaughn, JL., Strauch, MA., Bobay, BG., Thompson, R., Naylor, S., & Cavanagh, J. (2002). Macromolecular assembly of the transition state regulator AbrB in its unbound and complexed states probed by microelectrospray ionization mass spectrometry. Analytical Biochemistry, 306(2), 222-227. https://doi.org/10.1006/abio.2002.5704
The Bacillus subtilis global transition-state regulator AbrB specifically recognizes over 60 different DNA regulatory regions of genes expressed during cellular response to suboptimal environments. Most interestingly the DNA regions recognized by AbrB share no obvious consensus base sequence. To more clearly understand the functional aspects of AbrB activity, microelectrospray ionization mass spectrometry has been employed to resolve the macromolecular assembly of unbound and DNA-bound AbrB. Analysis of the N-terminal DNA binding domain of AbrB (AbrBN53, residues 1-53) demonstrates that AbrBN53 is a stable dimer, showing no apparent exchange with a monomeric form as a function of pH, ionic strength, solvent, or protein concentration. AbrBN53 demonstrates a capacity for DNA binding, underscoring the role of the N-terminal domain in both DNA recognition and dimerization. Full-length AbrB is shown to exist as a homotetramer. An investigation of the binding of AbrBN53 and AbrB to the natural DNA target element sinIR shows that AbrBN53 binds as a dimer and AbrB binds as a tetramer. This study represents the first detailed characterization of the stoichiometry of a transition-state regulator binding to one of its target promoters. (C) 2002 Elsevier Science (USA).