RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Low levels of lead and glutathione markers of redox status in human blood
Vacchi-Suzzi, C., Viens, L., Harrington, J. M., Levine, K., Karimi, R., & Meliker, J. R. (2018). Low levels of lead and glutathione markers of redox status in human blood. Environmental Geochemistry and Health, 40(4), 1175-1185. https://doi.org/10.1007/s10653-017-0034-3
Exposure to lead (Pb) is implicated in a plethora of health threats in both adults and children. Increased exposure levels are associated with oxidative stress in the blood of workers exposed at occupational levels. However, it is not known whether lower Pb exposure levels are related to a shift toward a more oxidized state. To assess the association between blood lead level (BLL) and glutathione (GSH) redox biomarkers in a population of healthy adults, BLL and four GSH markers (GSH, GSSG, GSH/GSSG ratio and redox potential E (h) ) were measured in the blood of a cross-sectional cohort of 282 avid seafood-eating healthy adults living on Long Island (NY). Additionally, blood levels of two other metals known to affect GSH redox status, selenium (Se) and mercury (Hg), and omega-3 index were tested for effect modification. Regression models were further adjusted for demographic and smoking status. Increasing exposure to Pb, measured in blood, was not associated with GSSG, but was associated with lower levels of GSH/GSSG ratio and more positive GSH redox potential E (h) , driven by its association with GSH. No effect modification was observed in analyses stratified by Hg, Se, omega-3 index, sex, age, or smoking. Blood Pb is associated with lower levels of GSH and the GSH/GSSG ratio in this cross-sectional study of healthy adults.