RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Functional constitutive nitric oxide synthase (NOS) is required for full expression of reflex cutaneous vasodilation that is attenuated in aged skin. Both the essential cofactor tetrahydrobiopterin (BH(4)) and adequate substrate concentrations are necessary for the functional synthesis of nitric oxide (NO) through NOS, both of which are reduced in aged vasculature through increased oxidant stress and upregulated arginase, respectively. We hypothesized that acute local BH(4) administration or arginase inhibition would similarly augment reflex vasodilation in aged skin during passive whole body heat stress. Four intradermal microdialysis fibers were placed in the forearm skin of 11 young (22 ± 1 yr) and 11 older (73 ± 2 yr) men and women for local infusion of 1) lactated Ringer, 2) 10 mM BH(4), 3) 5 mM (S)-(2-boronoethyl)-l-cysteine + 5 mM N(ω)-hydroxy-nor-l-arginine to inhibit arginase, and 4) 20 mM N(G)-nitro-l-arginine methyl ester (l-NAME) to inhibit NOS. Red cell flux was measured at each site by laser-Doppler flowmetry (LDF) as reflex vasodilation was induced. After a 1.0°C rise in oral temperature (T(or)), mean body temperature was clamped and 20 mM l-NAME was perfused at each site. Cutaneous vascular conductance was calculated (CVC = LDF/mean arterial pressure) and expressed as a percentage of maximum (%CVC(max); 28 mM sodium nitroprusside and local heat, 43°C). Vasodilation was attenuated at the control site of the older subjects compared with young beginning at a 0.3°C rise in T(or). BH(4) and arginase inhibition both increased vasodilation in older (BH(4): 55 ± 5%; arginase-inhibited: 47 ± 5% vs. control: 37 ± 3%, both P < 0.01) but not young subjects compared with control (BH(4): 51 ± 4%CVC(max); arginase-inhibited: 55 ± 4%CVC(max) vs. control: 56 ± 6%CVC(max), both P > 0.05) at a 1°C rise in T(or). With a 1°C rise in T(or), local BH(4) increased NO-dependent vasodilation in the older (BH(4): 31.8 ± 2.4%CVC(max) vs. control: 11.7 ± 2.0%CVC(max), P < 0.001) but not the young (BH(4): 23 ± 4%CVC(max) vs. control: 21 ± 4%CVC(max), P = 0.718) subject group. Together these data suggest that reduced BH(4) contributes to attenuated vasodilation in aged human skin and that BH(4) NOS coupling mechanisms may be a potential therapeutic target for increasing skin blood flow during hyperthermia in older humans.