RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
A literature review of concentrations and size distributions of ambient airborne Pb-containing particulate matter
Cho, S.-H., Richmond-Bryant, J., Thornburg, J., Portzer, J., Vanderpool, R., Cavender, K., & Rice, J. (2011). A literature review of concentrations and size distributions of ambient airborne Pb-containing particulate matter. Atmospheric Environment, 45(28), 5005-5015. https://doi.org/10.1016/j.atmosenv.2011.05.009
The final 2008 lead (Pb) national ambient air quality standards (NAAQS) revision maintains Pb in total suspended particulate matter as the indicator. However, the final rule permits the use of low-volume PM(10) (particulate matter sampled with a 50% cut-point of 10 mu m) Federal Reference Method (FRM) monitors in lieu of total suspended particulate (TSP) monitors for some non-source-oriented monitoring. PM(10) FRM monitors are known to provide more reliable concentration measurements than TSP samplers because they are omni-directional samplers and so are not biased by wind conditions. However, by design they exclude the upper tail of the particle size distribution. Hence, each monitor produces uncertainties about measured concentrations of Pb-bearing PM. Uncertainties in reported Pb data are also related to spatiotemporal variation of the concentration and size distribution of Pb-bearing PM. Therefore, a comprehensive literature review was performed to summarize the current knowledge regarding the concentration and size distribution of Pb particles in the atmosphere. The objectives of this review were to compile data that could shed light on these uncertainties, to provide insights useful during future Pb NAAQS reviews, and to identify areas where more research is needed. Results of this review indicated that Pb size distribution data are relatively limited and often outdated. Thirty-nine articles were found to have sufficiently detailed information regarding airborne Pb concentrations, study location, sample collection methods, and analytical techniques; only 16 of those papers reported Pb concentration data for multiple size fractions. For the most part. U.S. and European studies from the last forty years illustrate that the largest mode of the size distribution of airborne particle-bound Pb has shifted to larger sizes while airborne Pb concentrations have decreased in urban areas. This shift occurred as tetraethyl Pb additives in gasoline were phased out and industrial emissions and resuspended road dust became more important sources of Pb. Several studies also suggested the occurrence of long-range transport of Pb-bearing PM from industrial emissions. Uncertainties associated with these studies include influence of wind speed and direction on captured concentrations and variability in analytical techniques used to quantify Pb concentrations on the reported size distributions. Published by Elsevier Ltd